t is also useful to distinguish classical physics and modern physics. Classical physics has its origins approximately four hundred years ago in the studies of Galileo and Newton on mechanics, and similarly, in the work of Ampere, Faraday,Maxwell and Oersted one hundred fifty years ago in the fields of electricity and magnetism. This physics handles objects which are neither too large nor too small, which move at relatively slow speeds (at least compared to the speed of light: 186,000 miles per second!).
The emergence of modern physics at the beginning of the twentieth century was marked by three achievements. The first, in 1905, was Einstein's brilliant model of light as a stream of particles (photons). The second, which followed a few months later, was his revolutionary theory of relativity which described objects moving at speeds close to the speed of light. The third breakthrough came in 1910 with Rutherford's discovery of the nucleus of the atom.Rutherford's work was followed by Bohr'smodel of the atom, which in turn stimulated the work of de Broglie, Heisenberg, Schroedinger, Born, Pauli, Dirac and others on the quantum theory. The avalanche of exciting discoveries in modern physics continues today.
Given these distinctions within the field of physics experimental and theoretical, classical and modern it is useful to further subdivide physics into various disciplines, including astrophysics, atomic and molecular physics, biophysics, solid state physics, optical and laser physics, fluid and plasma physics, nuclear physics, and particle physics.
The emergence of modern physics at the beginning of the twentieth century was marked by three achievements. The first, in 1905, was Einstein's brilliant model of light as a stream of particles (photons). The second, which followed a few months later, was his revolutionary theory of relativity which described objects moving at speeds close to the speed of light. The third breakthrough came in 1910 with Rutherford's discovery of the nucleus of the atom.Rutherford's work was followed by Bohr'smodel of the atom, which in turn stimulated the work of de Broglie, Heisenberg, Schroedinger, Born, Pauli, Dirac and others on the quantum theory. The avalanche of exciting discoveries in modern physics continues today.
Given these distinctions within the field of physics experimental and theoretical, classical and modern it is useful to further subdivide physics into various disciplines, including astrophysics, atomic and molecular physics, biophysics, solid state physics, optical and laser physics, fluid and plasma physics, nuclear physics, and particle physics.
No comments:
Post a Comment